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Abstract

The aim of this study is to develop a tractable model of a nuclear reactor core taking the complexity of the structure

(including its nonlinear behaviour) and fluid flow coupling into account. The mechanical behaviour modelling includes

the dynamics of both the fuel assemblies and the fluid. Each rod bundle is modelled in the form of a deformable porous

medium; then, the velocity field of the fluid and the displacement field of the structure are defined over the whole

domain. The fluid and the structure are first modelled separately, before being linked together. The equations of motion

for the structure are obtained using a Lagrangian approach and, to be able to link up the fluid and the structure, the

equations of motion for the fluid are obtained using an arbitrary Lagragian Eulerian approach. The finite element

method is applied to spatially discretize the equations. Simulations are performed to analyse the effects of the

characteristics of the fluid and of the structure. Finally, the model is validated with a test involving two fuel assemblies,

showing good agreement with the experimental data.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The safety of Pressurized Water Reactor (PWR) cores subjected to seismic loading is a major concern in the nuclear

industry. A reactor core is a complex structure consisting of 150 fuel assemblies, each of which is composed of 289

regularly spaced rods. Each rod is about 1 cm in diameter, 4m in length, and the gap between two rods is about 3mm

wide (Fig. 1). There are two types of rod: 25 guide tubes support the other 264 fuel rods that contain enriched uranium.

The guide tubes are welded to 10 regularly spaced grids holding fuel rods. The contact points between grids and fuel

rods are fitted with springs, so that the fuel rods can slip into the grids. The fuel assemblies are immersed in pressurized

water (� 15MPa). The fluid flow is mainly axial, and the transverse component (� 0:3m=s) is small in comparison with

the axial component (� 5m=s). Since the fluid velocity is about 5m/s, the flow is highly turbulent, with a Reynolds

number Re ¼ 500 000 at 300 1C.
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Fig. 1. Part of a reactor core (left); part of a fuel assembly (right).

G. Ricciardi et al. / Journal of Fluids and Structures 25 (2009) 112–133 113
Modelling a nuclear reactor core involves two main difficulties: the first is the complexity of the structure, which

includes nonlinear contact and friction processes (around 30 000 contacts in a fuel assembly). The second one is the

presence of the fluid, which gives rise to complex damping, added mass effects, turbulence effects and fuel assembly

coupling processes. A direct numerical simulation taking into account the complex geometry, all the nonlinear

phenomena, and the fluid–structure interaction would result in too many degrees of freedom. Engineers need simplified

models for designing and maintaining reactor cores. Some of these models are briefly reviewed below.

A fuel assembly is frequently modelled in terms of a single beam (Rigaudeau, 1997; Viallet et al., 2003) which is

subjected to fluid effects via added mass and damping. These simple models can be used to simulate a row of fuel

assemblies and make it possible to perform the large number of simulations required for a statistical seismic loading

analysis. Some authors have proposed multi-beam models for simulating a fuel assembly (Ben Jedida, 1993; Fontaine

and Politopoulos, 2000) including friction laws to model the rod-grid connections. These models are in good agreement

with ‘‘in air’’ experiments, but the friction problems arising are difficult to solve numerically. Broc et al. (2003) proposed

a model with two degrees of freedom for each fuel assembly, accounting for the coupling between them, and then

developed a linear model for the whole reactor core. Pisapia et al. (2003) and Pisapia (2004) have presented a single-

degree-of-freedom nonlinear empirical model for a fuel assembly giving good agreement with ‘‘in air’’ and ‘‘in water’’

experimental data. Most of these models take the fluid effects into account in the form of a linear added mass and an

added damping term. Paı̈doussis (1966, 2003) has used a more complex expression for the fluid forces acting on a fuel

assembly, in which the velocity and the relative direction of the flow with respect to the fuel assembly are accounted for.

This model, which has been used by Chen (1970), Chen and Wambsganss (1972), Beaud (1997), and Pomı̂rleanu (2005),

gives much better results than the simplified models. However, this complex model does not account for the

perturbation of the flow induced by the fuel assemblies’ motion. Some authors have proposed to model the fluid flow

and the structure using homogenization methods (Jacquelin et al., 1998; Zhang, 1998). In these fluid–structure models,

the coupling between fuel assemblies is provided by the fluid flow.

In summary, the main point is that the fluid flow through fuel assemblies induces non-negligible fuel assembly

coupling which is not accounted for by most available models. Therefore, we develop a model for the whole reactor core

using fluid–structure coupling and porous media theory. This permits to improve the accuracy of the simulation while

keeping only a few degrees of freedom. The paper is organized as follows. Section 2 presents the porous media

modelling process. Section 3 deals with the fluid forces acting on a rod subjected to a flow. In Section 4, the modelling
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equations are developed; the fluid and structure equations are space-averaged to obtain global governing equations,

thus each fuel assembly is assimilated to a porous beam, including nonlinear viscoelastic behaviour, and subjected to an

axial flow. In Section 5, we briefly present the numerical method. In Section 6 a numerical example modelling two fuel

assemblies is proposed. The last section is devoted to the experimental validation of the model on two fuel assemblies

subjected to an axial flow.
2. Method

The procedure used to draw up the equations of motion governing the complex fluid/structure entity under

investigation is presented in Fig. 2. This procedure is based on a porous medium approach including an equivalent fluid

model and an equivalent structure model. Equations of motion for an equivalent fluid and structure are first established

separately. For the fluid part, global fluid flow equations through the rod bundle are obtained by spatially averaging the

Navier–Stokes equation written with an arbitrary Lagragian Eulerian (ALE) approach. The equivalent fluid, the

variables of which are space-averaged, is defined in the whole domain. Structure related effects on the fluid are

accounted for by a body force (Fstructure!fluid), which is also defined in the whole domain. For the structure part, each

fuel assembly is modelled as a porous medium subjected to the body force Ffluid!structure, which is the opposite of the

body force Fstructure!fluid. Fluid–structure coupling forces are built from fluid forces acting on a rod subjected to an axial

flow. Finally, the equivalent structure and equivalent fluid motion equations are both solved with a finite element

method.
3. Preliminary: forces acting on a rod

In this section we propose an expression for the fluid force acting on a rod. This expression will be used to model the

fluid/structure coupling force in the porous media approach.

3.1. Paı̈doussis model

For a slender body immersed in a fluid and subjected to a cross-flow, Morison et al. (1950) proposed to decompose

the fluid forces into drag and inertial terms. This approach is in good agreement with experiments and has been

used in many subsequent studies (Zhou and Graham, 2000; Sarpkaya, 2001). For an axial flow, Paı̈doussis (1966)

proposed an expression for the fluid forces acting on the slender body. His theory based on studies by Lighthill (1960,

1986) and Taylor (1952) has also been widely used (Chen, 1970; Chen and Wambsganss, 1972; Lopes et al., 2002;
Fig. 2. Porous modelling and method.
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Conca et al., 1997). The inviscid term takes the form

FI ¼ �mf

q
qt
þ Vx

q
qx

� �2

Uye2 �mf

q
qt
þ Vx

q
qx

� �2

Uze3, (1)

where Uy is the rod displacement in the ey direction, Uz is the rod displacement in the ez direction, Vx is the fluid

velocity in the ex direction, and mf is a virtual mass per unit length. Viscous forces have transverse components FN and

FD, and an axial component FL:
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where r is the fluid density, D is the rod diameter, and C, CT and CN are coefficients which have to be determined; these

coefficients depend on the fluid viscosity, the geometry of the structure, and the casing.

3.2. Modified Paı̈doussis model

The Paı̈doussis model deals with an axial flow (Vy ¼ 0 and Vz ¼ 0), but in our model a small transverse component

of the flow has to be included (Vya0 and Vza0, Fig. 3). In order to take it into account, we therefore developed a

modified Paı̈doussis model in which the transverse components of the structure velocity are replaced by the transverse

structure velocity relative to the fluid flow, for example in the ey direction qUy=qt� Vy.

Expanding first (1) with respect to time and space derivatives gives
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and replacing the structure velocity by the relative structure–fluid velocity in (2)–(5) gives
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Fig. 3. Rod subjected to axial and transverse flow.
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where Vy is the fluid velocity in the ey direction, and Vz is the fluid velocity in the ez direction. The expressions (6)–(9)

will be used in Section 4.3.3 to establish Ffluid!structure.
4. Porous model equations

In this section we develop the porous media modelling procedure as described in Section 2. The whole domain of the

core including NFA fuel assemblies is noted Oc. It is a two-phase parallelepiped containing the fluid and the structure;

Lcx, Lcy and Lcz are the dimensions of Oc in the ex, ey and ez directions. Note that Lcx is also the length of a fuel

assembly. Oc is subdivided into an NFA parallelepiped noted OFAi
, each of them containing one fuel assembly.

4.1. Hypotheses

In order to establish equations of motion, we make the following assumptions: the fluid (in this case water) is

classically assumed to be viscous, incompressible and Newtonian. Gravity effects are negligible compared to the inertial

and viscous forces. As classically assumed in slender body theory, the sections of the rods do not deform, and the

presence of grids means that the distance between two rods in a fuel assembly will remain constant. Moreover in order

to make easier the writing of the equivalent fluid equations, we assume that the distance between two rods remains

constant in the whole core; consequences of that strong hypothesis will be discussed latter in the paper. Turbulent

kinetic energy is assumed to be negligible in comparison with the turbulent diffusion.

The hypotheses are recapitulated here:
H1.
 The fluid is viscous, incompressible and Newtonian.
H2.
 Gravity effects are neglected.
H3.
 The rod section does not deform.
H4.
 Distance between two rods remains constant.
H5.
 Turbulent kinetic energy is negligible in comparison with the turbulent diffusion.
4.2. Equivalent fluid model

In this section, we establish the equations for an equivalent fluid in Oc. We space-average the equations of fluid

motion written with an ALE approach. The small-scale turbulence is then modelled with a turbulent viscosity.

4.2.1. ALE approach

Fluid equations are usually written using a Eulerian approach: the fluid is observed through a fixed window.

Structure equations are classically written using a Lagrangian approach. In order to be able to relate the fluid and

structure equations, we must observe the fluid through the motion of the structure, and we therefore use an ALE

approach to write the fluid equations (Duarte et al., 2004). The fluid is observed through a moving window which

follows the motion of the structure. It should be noticed that in a general ALE approach, the reference frame can move

and deform with an arbitrary velocity.

By using space-averaging methods in the present study, we define an equivalent fluid and an equivalent structure,

both of which are defined in the whole domain, so that the displacement of the fluid–structure frontier and the

geometric conservation law are included in the space-averaging and the fluid mesh is fixed.

The Navier–Stokes equations written with the ALE approach for an incompressible fluid under assumption H2 give

r
qV
qt
þ r V�

qÛ
qt

 !
� rV ¼ divr, (10)

divV ¼ 0, (11)
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where Û is a vector field defined in the whole domain which coincides with the displacement of the structure on the

structure domain, V is the fluid velocity, and r is the Cauchy stress tensor. Û will be described more precisely later in the

paper. As the fluid is assumed to be Newtonian H1,

r ¼ �PId þ mðrVþrVTÞ, (12)

where P is the pressure, m is the viscosity, and Id is the identity tensor.
4.2.2. Space-averaging

Banerjee and Chan (1980) and Delhaye et al. (1981) have established instantaneous space-averaged equations for a

two-phase flow, and Robbe and Bliard (2002) have applied this method to a rod bundle. We use the same method as

Robbe and Bliard (2002), but we introduce a different structure force.

Let us consider the control volume Otðx; y; zÞ centred on the point Mðx; y; zÞ with volume VOt
ðx; y; zÞ ¼ a� a� dx

where a is the distance between two rod centres, and dx is the thickness in the axial direction, with dx5a (Fig. 4(a)):

Otðx; y; zÞ ¼ Of ðx; y; zÞ [ Osðx; y; zÞ, (13)

VOt
ðx; y; zÞ ¼ VOf

ðx; y; zÞ þ VOs
ðx; y; zÞ, (14)

where Of ðx; y; zÞ (respectively, Osðx; y; zÞ) denotes the fluid (respectively, the structure) domain and VOf
ðx; y; zÞ

(respectively, VOs
ðx; y; zÞ) is its volume. The frontier of Of ðx; y; zÞ will be denoted qOf ðx; y; zÞ with

qOf ðx; y; zÞ ¼ Atðx; y; zÞ [ Asðx; y; zÞ, (15)

where Atðx; y; zÞ is the surface bounding jointly the fluid volume and the control volume, and Asðx; y; zÞ is the

fluid–structure frontier surface (Fig. 4(b)).

Under assumptions H3 and H4, the fluid fraction present in the control volume does not depend on the control

volume position Mðx; y; zÞ:

VOt
ðx; y; zÞ ¼ VOt

; VOf
ðx; y; zÞ ¼ VOf

; VOs
ðx; y; zÞ ¼ VOs

, (16)

and the structure fraction in Ot is equal to the volume of a dx length rod. This will allow us to define the fluid/structure

coupling force as force acting on a rod defined in Section 3.

Integrating over the fluid domain Of ðx; y; zÞ, the Navier–Stokes equations (10) and (11) gives

r
1

VOt

Z
Of ðx;y;zÞ

qV
qt
þ V�

qÛ
qt

 !
� rV

 !
dO ¼

1

VOt

Z
Of ðx;y;zÞ

divrdO, (17)

1

VOt

Z
Of ðx;y;zÞ

divVdO ¼ 0. (18)
Fig. 4. Control volume for space-averaging.
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According to the Leibniz and Gauss theorem, the left-hand-side term of (17) can be transformed as follows:

r
1

VOt

Z
Of ðx;y;zÞ

qV
qt
þ V�

qÛ
qt

 !
� rV

 !
dO ¼ r

1

VOt

q
qt
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Of ðx;y;zÞ

VdOþ r
1

VOt

div

Z
Of ðx;y;zÞ

V� VdO

� r
1

VOt

Z
Of ðx;y;zÞ

qÛ
qt
� rVdO� r

1
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Z
Atðx;y;zÞ

Vn � VAt
dS

� r
1

VOt

Z
Asðx;y;zÞ

Vn � VAs
dS � r

1

VOt

Z
Asðx;y;zÞ

Vn � VdS, (19)

where VAt
is the velocity of the surface Atðx; y; zÞ, and VAs

is the velocity of the surface Asðx; y; zÞ.
Based on the assumptions H3 and H4, the surface integral terms over Asðx; y; zÞ cancel. Moreover choosing Û

constant on the fluid domain Of , the first term of the second line of (19) can be reduced to

r
1

VOt

Z
Of ðx;y;zÞ

qÛ
qt
� rVdO ¼ r

1

VOt

qÛ
qt
� r

Z
Of ðx;y;zÞ

VdO, (20)

and the second term of the second line of (19) can be transformed after tedious manipulations as

r
1

VOt

Z
Atðx;y;zÞ

Vn � VAt
dS ¼ r

1

VOt

qÛ
qt
� r

Z
Of ðx;y;zÞ

VdO� r
1

VOt

Z
Of ðx;y;zÞ

VdO � r
qÛ
qt

. (21)

Note that Û can be chosen constant in the fluid domain because the structure displacement is constant on As due to the

fact that the structure displacement does not depend on y and z on the structure domain, and that the control volume is

thin in the ex direction.

Substituting (19)–(21) into (17), and applying the Leibniz and Gauss theorem to the right-hand-side term of (17) and

to (18) gives

r
1

VOt

q
qt

Z
Of ðx;y;zÞ

VdOþ r
1

VOt

div

Z
Of ðx;y;zÞ

V� VdO ¼ 2r
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qÛ
qt
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� r
1
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Of ðx;y;zÞ

VdO � r
qÛ
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1
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div
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rdOþ
1

VOt

Z
Asðx;y;zÞ

rndS, (22)

1

VOt

div

Z
Of ðx;y;zÞ

VdO ¼ 0. (23)

Before establishing governing equations for the averaged velocity ð1=VOf
Þ
R
Of ðx;y;zÞ

VdO, we have to deal with the

convecting term ðr=VOt
Þdiv

R
Of ðx;y;zÞ

V� VdO which will be treated by modelling the turbulence.

4.2.3. Turbulence modelling

There are two classical ways of modelling turbulence: by taking the temporal fluctuations that lead to k2� models, or

by taking the spatial fluctuations that lead to LES models (Barsamian and Hassan, 1997; Hinze, 1975; Lessieur, 1993).

Since we use the space-averaging method, the turbulence is modelled here by taking the spatial fluctuations

into account.

The fluid velocity can be decomposed into an averaged part and a fluctuating part V0:

V ¼
1

VOf

Z
Of ðx;y;zÞ

VdOþ V0, (24)

where the averaged value of V0 on Of ðx; y; zÞ is equal to zero. Substituting (24) into the convective term gives

r
1

VOt

div

Z
Of ðx;y;zÞ

V� VdO ¼ r
1

VOt

div
1

VOt

Z
Of ðx;y;zÞ

VdO�
1

VOt

Z
Of ðx;y;zÞ

VdO

 !

þ r
1

VOt

div

Z
Of ðx;y;zÞ

V0 � V0 dO, (25)

where the last term, which corresponds to turbulence effects in the control volume, refers to the Reynolds tensor rRe:

rRe ¼ r
1

VOt

Z
Of ðx;y;zÞ

V0 � V0 dO. (26)
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Classically, the Reynolds tensor is modelled by the turbulent viscosity model proposed by Smagorinsky (1963):

rRe ¼ �
2

3
rkT Id þ mT r

1

VOt

Z
Of ðx;y;zÞ

VdOþ r
1

VOt

Z
Of ðx;y;zÞ

VdO

 !T
0
@

1
A; (27)

where mT is the turbulent viscosity, and kT is the turbulent kinetic energy (which is equal to the kinetic energy of the

fluctuating velocity). Under assumption H5, 2
3 rkT Id can be neglected and, as the flow in a PWR is mostly

homogeneous, mT is chosen constant in time and space.

4.2.4. Equivalent fluid

Let us define the equivalent fluid, the variables of which are

Veq ¼
1

VOf

Z
Of ðx;y;zÞ

VdO, (28)

Peq ¼ b
1

VOf

Z
Of ðx;y;zÞ

PdO. (29)

Substituting (28) and (29) into (22) and (23), and using (27) gives

req
qVeq

qt
þ reqdivVeq � Veq ¼ � rPeq þ mTeqDVeq þ 2req

qÛ
qt
� rVeq � reqVeq � r

qÛ
qt
þ Fstructure!fluid, (30)

divVeq ¼ 0, (31)

where req ¼ br, mTeq ¼ bðmT þ mÞ, with b ¼ VOf
=VOt

denotes the porosity, and

Fstructure!fluid ¼
1

VOt

Z
Asðx;y;zÞ

rndS. (32)

We recognize in the first line of (30) the classical equation of an incompressible Newtonian fluid of density req, and
viscosity mTeq written with an ALE approach. This equation contains two additional terms. The first reqVeq � rqÛ=qt

results from the space-averaging of the ALE formulation. The second term Fstructure!fluid represents the structure body

force acting on the fluid (Fig. 2). Finally, the equivalent fluid can be considered as a single substance filling the whole

domain Oc. It is governed by (30) and (31).

4.3. Equivalent structure model

In this section, we establish the equations for an equivalent structure in OFAi
to model a fuel assembly. We space-

average the structure motion equations as classically done with porous media. Since the fuel assembly is a slender body,

we use Timoshenko beam assumptions to transform the 3-D equilibrium equations into beam reduced equations. The

constitutive laws for the beam are obtained from semi-empirical considerations.

4.3.1. Space-averaging

As in the fluid case, we space-average the equation of motion of the structure over the structure domain Osðx; y; zÞ
(Fig. 4):

rs

1

VOt

Z
Osðx;y;zÞ

q2U
qt2

dO ¼
1

VOt

Z
Osðx;y;zÞ

divrs dO, (33)

where U is the structure displacement, rs is the structure density, and rs is the Cauchy stress tensor.

According to the Leibniz and Gauss theorem, and under assumptions H3 and H4, Eq. (33) becomes

ð1� bÞrs

q2

qt2
1

VOs

Z
Osðx;y;zÞ

UdO
� �

¼ ð1� bÞdiv
1

VOs

Z
Osðx;y;zÞ

rs dO
� �

þ
1

VOt

Z
Asðx;y;zÞ

rsndS. (34)

As previously done with the fluid, let us define an equivalent structure with variables

Ueq ¼
1

VOs

Z
Osðx;y;zÞ

UdO, (35)
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rseq ¼
1

VOs

Z
Osðx;y;zÞ

rs dO. (36)

Eq. (34) can be rewritten as

rseq
q2Ueq

qt2
¼ ð1� bÞdivrseq þ Ffluid!structure, (37)

where rseq ¼ ð1� bÞrs and

Ffluid!structure ¼
1

VOt

Z
Asðx;y;zÞ

rsndS. (38)

We recognize in (37), the classical Newton’s law for a continuous structure written on the deformed configuration

with the density rseq and a body force Ffluid!structure which represents the fluid body force acting on the structure

(Fig. 2). The transport of (37) to the fixed undeformed configuration gives [see Holzapfel (2000)]:

rseq
q2Ueq

qt2
¼ ð1� bÞdiv ððId þrUeqÞSseqÞ þ JFfluid!structure, (39)

where Sseq is the second Piola–Kirchhoff stress tensor, and J is the volume ratio between the reference and the current

configuration. Under assumptions H3 and H4, the motion is volume-preserving (J ¼ 1 and does not depend on time

and position); therefore the body force expression is the same in the reference and the current configuration. Finally, an

equivalent structure, for each fuel assembly, can be considered as a single substance filling the domain OFAi
(Fig. 5(a)).

Note that since each fuel assembly has its own displacement, the displacement field defined on the whole domain Oc is

continuous in part: the discontinuities are located on the frontiers delimiting fuel assembly domains qOFAi
.

4.3.2. Kinematics of a fuel assembly

Because of the dimensions of a fuel assembly, we can use a beam hypothesis to model the equivalent structure. Since

it was observed that the shear stiffness of a fuel assembly is very low, the Euler–Bernoulli approximation is not satisfied,

and we shall therefore use a Timoshenko beam model. The kinematics of a Timoshenko beam are defined by the

displacement of the mean line ueq and the rotation of the cross-section heq (Fig. 5(b)).

The displacement Ueqðx; y; zÞ of a fuel assembly point which is not located on the mean line is given by

Ueqðx; y; zÞ ¼ ueqðxÞ þ heqðxÞ ^ ðyey þ zezÞ. (40)

4.3.3. Fluid–structure coupling force

In order to couple fluid and structure, the equivalent fluid model is written with Û ¼ Ueq, and the fluid–structure

coupling force Fstructure!fluid is specified as a function of Ueq and Veq. Darcy and Forcheimer have proposed some simple

expressions for Fstructure!fluid [see Costa et al. (2004), Fourar et al. (2004) and Zhang et al. (2003)] assuming the inertial

effects negligible and the porosity isotropic, which is suitable for porous media modelling in soil and oil research

purposes. Since these assumptions are not valid dealing with our problem, we propose a model based on the modified

Paı̈doussis expression presented in Section 3.
Fig. 5. (a) Porous medium model; (b) kinematics of a Timoshenko beam.
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Recalling that the control volume contains one rod, the structure/fluid body force brought to Mðx; y; zÞ is defined
from (6)–(9) as (Fig. 6)

Fstructure!fluid ¼ �
1

S
ðFI þ FN þ FD þ FLÞ, (41)

where S ¼ a2.

Substituting (40) into (41), projecting it on the base (ex,ey,ez) and neglecting second order terms gives

Fstructure!fluid ¼
mf

S

q
qt

queqy

qt
� V eqy

� �
þ V2

eqx

q2ueqy

qx2
þ 2V eqx

q
qx

queqy

qt
� V eqy

� � !
ey

þ
1

S

1

2
rDV eqx

CN

queqy

qt
� V eqy

þ V eqx

queqy

qx

� �
þ C

queqy

qt
� V eqy

� �� �
ey

þ
mf

S

q
qt

queqz

qt
� V eqz

� �
þ V2

eqx

q2ueqz

qx2
þ 2V eqx

q
qx

queqz

qt
� V eqz

� � !
ez

þ
1

S

1

2
rDV eqx

CN

queqz

qt
� V eqz

þ V eqx

queqz

qx

� �
þ C

queqz

qt
� V eqz

� �� �
ez

�
1

2S
rDCT V2

eqx
ex �

1

2S
rDCT V2

eqx

queqy

qx
ey �

1

2S
rDCT V2

eqx

queqz

qx
ez. (42)

The model is completely defined, given the numerical values of the coefficients mf , C, CT and CN which depend on the

geometry, the roughness and the casing.

The fluid force acting on a fuel assembly is given by the integration over the fuel assembly cross-section of the fluid

body force Ffluid!structure:

Ffluid!FA ¼

Z
Sfa

Ffluid!structure dS, (43)

Mfluid!FA ¼

Z
Sfa

ðyey þ zezÞ ^ Ffluid!structure dS, (44)

where Sfa is the area of the cross-section of a fuel assembly.
4.3.4. Dynamic equations

Since the transverse displacement of the fuel assembly remains small as compared to the size of its cross-section the

geometrical nonlinearities are limited to the moderate rotations assumption. The 3-D dynamic equations (39) are

reduced to following beam form (Chia, 1980):

mfa

q2ueqx

qt2
¼

qT

qx
þ Ffluid!FA � ex, (45)
Fig. 6. Modelling of structure/fluid coupling body force.
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mfa

q2ueqy

qt2
¼

qQy

qx
þ

q
qx

T
queqy

qx

� �
þ Ffluid!FA � ey, (46)

mfa

q2ueqz

qt2
¼

qQz

qx
þ

q
qx

T
queqz

qx

� �
þ Ffluid!FA � ez, (47)

I fa
q2heq
qt2
¼

qM
qx
þ e1 ^QþMfluid!FA, (48)

where mfa is the mass per unit length of a fuel assembly, I fa is the inertial moment per unit length of a fuel assembly, T is

the tension force, M ¼Myey þMzez is the bending moment and Q ¼ Qyey þQzez is the shear force.

In the following we make explicit the term T. Neglecting q2ueqx
=qt2 in (45) gives

qT

qx
þ

1

S

Z
Sfa

FLx
dS ¼ 0, (49)

where FLx
denotes the component of FL on the ex direction. Assuming that FL is constant along the ex direction and

integrating (49) gives

T ¼ T0 � x
1

S

Z
Sfa

FLx
dS, (50)

where T0 is the tension force at the bottom of the fuel assembly, and has to be identified as a parameter.

Substituting (50) and (43) in (46) and (47) gives

mfa

q2ueqy

qt2
¼

qQy

qx
þ T0

q2ueqy

qx2
þ

1

S

Z
Sfa

FIy
þ FNy

þ FDy
� xF Lx

q2ueqy

qx2

 !
dS, (51)

mfa

q2ueqz

qt2
¼

qQz

qx
þ T0

q2ueqz

qx2
þ

1

S

Z
Sfa

FIz
þ FNz

þ FDz
� xFLx

q2ueqz

qx2

 !
dS, (52)

where the subscript y (respectively, subscript z) refers to the component on the ey (respectively, ez) direction.

4.3.5. Constitutive laws of the beam

The coupling between grids and rods gives rise to complex contact and friction processes which make it difficult to

establish the analytical overall constitutive laws from the bending law of the rods and the friction law. It is therefore

proposed to model the global nonlinear behaviour of the fuel assembly empirically. Pisapia et al. (2003) and Pisapia

(2004) have observed that the results obtained using models based on the quadratic stiffness and quadratic damping

give good agreement with the experimental data. Here a quadratic law is used for the stiffness, whereas the damping is

assumed to be linear. In fact the structural damping is very small in comparison with the fluid damping, so it is useless

to refine it. The bending moment M and the shear force Q are related to kinematic unknowns by

Qy ¼ G1Sfa

queqy

qx
� yeqz

� �
þ G2Sfa

queqy

qx
� yeqz

����
���� queqy

qx
� yeqz

� �
þ mGSfa

q
qt

queqy

qx
� yeqz

� �
, (53)

Qz ¼ G1Sfa

queqz

qx
þ yeqy

� �
þ G2Sfa

queqz

qx
þ yeqy

����
���� queqz

qx
þ yeqy

� �
þ mGSfa

q
qt

queqz

qx
þ yeqy

� �
, (54)

My ¼ E1I
qyeqy

qx
þ E2I

qyeqy

qx

����
���� qyeqy

qx

� �
þ mEI

q2yeqy

qtqx
, (55)

Mz ¼ E1I
qyeqz

qx
þ E2I

qyeqz

qx

����
���� qyeqz

qx

� �
þ mEI

q2yeqz

qtqx
, (56)

where G1, G2, E1, E2 are stiffness coefficients, mG, mE are structural damping coefficients, and I is the quadratic moment

of inertia.

4.4. Coupled model

We have built an equivalent fluid model (30) and (31) defined in Oc, using the vector field Û, and an equivalent

structure model (37) defined for each fuel assembly in OFAi
. Thus, for each particle of Oc, a structure variable coexists

with a fluid variable.
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We can now summarize the equivalent model for the fluid–structure problem: we have to solve the coupled equations

in Oc,

req
qVeq

qt
þ reqdivVeq � Veq ¼ �rPeq þ mTeqDVeq þ 2req

queq
qt
� rVeq � reqVeq � r

queq
qt
þ Fstructure!fluid, (57)

divVeq ¼ 0, (58)

mfa

q2ueqy

qt2
¼

qQy

qx
þ T0

q2ueqy

qx2
þ

1

S

Z
Sfa

FIy
þ FNy

þ FDy
� xFLx

q2ueqy

qx2

 !
dS, (59)

mfa

q2ueqz

qt2
¼

qQz

qx
þ T0

q2ueqz

qx2
þ

1

S

Z
Sfa

FIz
þ FNz

þ FDz
� xFLx

q2ueqz

qx2

 !
dS, (60)

Ifa
q2heq
qt2
¼

qM
qx
þ e1 ^QþMfluid!FA, (61)

with

ueq ¼
XNFA

i¼1

ueqi
IOFAi

; heq ¼
XNFA

i¼1

heqi
IOFAi

, (62)

where Veq, Peq, ueqi
and heqi

are the unknowns, and IOFAi
denotes the indicator function of OFAi

.

The unknowns have to satisfy some boundary conditions as follows for each instant noted t.
(i)
3,64)
Fuel assemblies are clamped at their ends, which means displacements and rotations are set equal to zero:

ueqi
ð0; tÞ ¼ 0; ueqi

ðLcx; tÞ ¼ 0; heqi
ð0; tÞ ¼ 0; heqi

ðLcx; tÞ ¼ 0. (6
(ii)
(65)
The fluid velocity is imposed on the inlet and the outlet, and supposed to be homogeneous:

8ðy; zÞ; VeqðLcx; y; z; tÞ ¼ Vbcex; Veqð0; y; z; tÞ ¼ Vbcex,

where Vbc is the constant value of the imposed velocity.
(iii)
(66)
At the walls a non-penetration condition of the fluid is imposed:

8ðx; zÞ; Veqðx; 0; z; tÞ � ey ¼ 0; Veqðx;Lcy; z; tÞ � ey ¼ 0,

8ðx; yÞ; Veqðx; y; 0; tÞ � ez ¼ 0; Veqðx; y;Lcz; tÞ � ez ¼ 0.
 (67)
4.5. Discussion

We have built a global model of the behaviour of a PWR to avoid the large number of degrees of freedom necessary

to make a direct numerical simulation of the fluid and structure dynamics. We have transformed a fluid–structure

problem with a complex geometry (large number of rods linked by numerous contact friction points) into a problem

with a more simple geometry (equivalent beam for each fuel assembly). It becomes possible to simulate both the fluid

and the structure dynamics of a whole core. Some local information is lost compared to a direct numerical simulation,

such as vibrations of rods into grids, but interactions between fuel assemblies, via fluid or contacts, are conserved. For

example the effects of an external excitation (such as an earthquake or plane crash) on the impact forces between fuel

assemblies can be simulated.

The physical problem includes several scales (Fig. 7) which have been taken into account: the reactor core is made up

of fuel assemblies, fuel assemblies are made up of rods which correspond to the control volume scale, and the small-

scale turbulence are accounted for by a turbulent viscosity model.

The proposed model needs several coefficients: some of them are given by the geometry and physical characteristics of

materials involved in the problem (mfa, I fa, Sfa, I, r, req, mTeq, Lcx, D and S), the others are introduced by empirical

modelling and have to be identified by experiments (G1, G2, E1, E2, mG, mE , mf , CN , CT and C). T0 results from a

compressive spring it therefore induces a decrease of the stiffness.

Unknowns of both equivalent fluid and structure are defined in the whole domain Oc, which means that, in the

proposed model, there is no pure fluid zone accounted for. We assumed that distance between two rods remains

constant H4, but this is no more true (in the physical problem) at the interfaces between fuel assemblies, so pure fluid
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Fig. 7. The scales of the problem.
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zones appear at those interfaces and between fuel assemblies and walls. The size of the pure fluid zones changes in time

as the fuel assemblies move, and it could induce additional fluid forces on the fuel assemblies at the interfaces.

5. Numerical model

The variational formulation of Eqs. (57)–(61) is spatially discretized using the finite element method. In the case of

the 2-D model, we use a Q9=4 mixed ‘‘velocity–pressure’’ element, the velocity of the fluid is discretized with nine nodes,

and the continuous pressure with four nodes. In addition, the structure field (Timoshenko beams) is discretized using a

3-node beam element. In the case of the 3-D model, we use a Q27=8 mixed ‘‘velocity–pressure’’ element, the velocity of

the fluid is discretized with 27 nodes, and the continuous pressure with eight nodes. The structure field is discretized

using a 3-node beam element in each direction. The spatial mesh of a single fuel assembly is shown in Fig. 8. For the

fluid, the finite element mesh covers the whole domain of the fuel assembly. For the structure, the mesh is 1-D. Based on

the kinematics (40), the degrees of freedom are the displacements and the rotations of the nodes on the mean line of the

beam. Therefore, one structure element (for instance S1 in Fig. 8) is superimposed on several fluid elements (for

instance F1, F2, F3, F4 and F5 in Fig. 8). Thus the number of degrees of freedom related to the fluid is larger than

those related to the structure. Note that it is necessary to ensure that the mesh scale is smaller than the fuel assembly

scale in order to obtain significant results, but it must be larger than the control volume scale, otherwise the physical

relevance of the space-averaging procedure would be lost (Fig. 7).

For the temporal discretization procedure, two different classical schemes were chosen to discretize the fluid and

structure equations, the fluid equations (57) and (58) are temporally discretized with an Uzawa scheme [see Langtangen

et al. (2002)], and the structure equations (59)–(61) are discretized with a Newmark scheme [see Krenk (2006)]. At each

time step, the following nonlinear system has to be solved:

AF ðvkþ1; ukþ1Þ aDtB HF ðvkþ1Þ

BT 0 0

HSðvkþ1Þ 0 ASðvkþ1; ukþ1Þ

0
B@

1
CA

vkþ1

pkþ1

ukþ1

0
B@

1
CA ¼

Gk

0

Lk

0
B@

1
CA, (68)

where vkþ1 is the fluid velocity vector discretized unknown, pkþ1 is the fluid pressure vector discrete unknown, ukþ1 is the

structure vector discrete unknown, and k refers to the kth time step. Spatial and temporal discretizations give the linear
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Fig. 8. Fluid and structure mesh used to discretize one fuel assembly.
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and nonlinear matrix: AF ðvkþ1, ukþ1Þ, B, HF ðvkþ1Þ, HSðvkþ1Þ, ASðvkþ1; ukþ1Þ, Gk, and Lk. The nonlinear system is solved

with Newton’s method.

6. Numerical example

In this section, free oscillations of two fuel assemblies subjected to a flow (see Fig. 9) are simulated, first in 2-D and

second in 3-D.

6.1. 2-D simulations

Dynamic 2-D simulations of two fuel assemblies subjected to a 3m/s axial flow were performed using coefficients

given in Tables 1–4, and with the following discretization parameters: six fluid and structure elements in the axial

direction and eight fluid elements in the transverse direction (four fluid elements for each fuel assembly), and a time step

Dt ¼ 0:013 s. Fig. 10 shows the displacements of the third grids from the bottom of the left and right fuel assemblies

versus time; the initial shape deformation of the left fuel assembly (with an amplitude of 10mm) was imposed, whereas

the right one was initially at rest. At t ¼ 0 the system is set free of external forces; we observe that while the left fuel

assembly returns to its equilibrium position, the right fuel assembly starts to oscillate before finally returning to its

equilibrium position. That is the result of the coupling between fuel assemblies and water: the left fuel assembly induces

a perturbation in the fluid flow. As a result, the fluid applies forces on the right fuel assembly and makes it oscillate.

Fig. 11 shows the displacement of the third grid of the left fuel assembly versus time obtained with three temporal

discretizations (right) and 13 spatial discretizations (from 6 to 12 elements in the axial and transverse directions) (left).

The convergence study shows that the numerical model is stable considering the time discretization (Fig. 11, left).

Convergence of the spatial parameters is gradually achieved, and six elements in the axial direction, and eight elements

in the transverse direction give accurate enough results.

6.2. 3-D simulations

Dynamic 3-D simulations of two fuel assemblies subjected to a 3m/s axial flow were performed with six fluid and

structure elements in the ex direction, eight fluid elements in the ez direction (four fluid elements for each fuel assembly),
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Fig. 9. Modelling of two fuel assemblies subjected to an axial flow.

Table 1

Geometrical and inertial coefficients related to the structure; Eqs. (59)–(61)

mfa Ifa Sfa I Lcx

60 kg/m 0.59 kgm 1:19� 10�2 m2 1:19� 10�5 m4 2.75m

Table 2

Coefficients related to the structure behaviour; Eqs. (59)–(61)

G1 G2 E1 E2 mG mE

2� 107 Pa �2� 107 Pa 5� 108 Pa �6� 108 Pa 6� 104 Pa s 4� 106 Pa s

Table 3

Fluid coefficients; Eq. (57)

r req mTeq

1000kg=m3 532:44 kg=m3 0:1kgm2=s

G. Ricciardi et al. / Journal of Fluids and Structures 25 (2009) 112–133126
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Table 4

Coefficients related to fluid/structure coupling; Eq. (42)

mf CT CN C D S

0:3 kg=m3 0:3m�2 3m�2 30 kg/s 0.01m 1� 10�4 m2
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Fig. 10. Displacement (mm) versus time (s) of the third grid of the left fuel assembly (top), and of the right fuel assembly (bottom)

resulting from the numerical simulation with coefficients of Tables 1–4, in 3m/s water flow.
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Fig. 11. Displacement (mm) versus time (s) of the third grid of the left fuel assembly for different time discretizations (left), and

different spatial discretizations (right).
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Fig. 12. Fluid velocity field 3-D numerical estimation in the middle horizontal cross-section at t ¼ 0:09 s (left), and at t ¼ 0:15 s (right).
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Fig. 13. Displacement (mm) versus time (s) of the third grid of the left fuel assembly (left), and of the right fuel assembly (right):

comparison of 2-D/3-D simulations.
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three fluid elements in the ey direction and a time step Dt ¼ 0:013 s, an initial displacement of the left the fuel assembly is

imposed in the ez direction. The 3-D simulations show that convergence in the ey direction was achieved with one

element. Fig. 12 shows the transverse fluid velocity field (V eqy
and V eqz

) on the horizontal cross-section located at the

level of the third grid; at 0.09 s the two fuel assemblies move in the same direction, whereas at 0.15 s they move in

opposite directions. The fluid flow is mostly in the ez direction, except at the interface between the fuel assemblies. The

2-D and 3-D comparisons show similar fuel assembly displacements (Fig. 13). However, 3-D simulations involve much

more degrees of freedom (and CPU time) than 2-D simulations and do not provide more precise results for the chosen

configuration.
7. Experimental validation

In this section, we compare the experimental data and numerical results obtained for two fuel assemblies subjected to

an axial flow.

7.1. Experimental apparatus

Fig. 14 shows the experimental apparatus used to test the validity of the model. The experimental apparatus includes

two reduced scale fuel assemblies (8� 8 rods for a length of 2.75m) subjected to an axial flow. The gap between fuel

assemblies and between fuel assemblies and the casing is about 1mm, except for the casing on the left of the left fuel

assembly: the experimental apparatus includes a 10mm wide bypass on the left of the left fuel assembly, which is

necessary to be able to trigger the initial displacement. This experimental device was initially designed to study impacts

between fuel assemblies [see Collard and Vallory (2001)]. An initial displacement is imposed on the third grid of the left

fuel assembly, and the right fuel assembly is in its equilibrium state. At t ¼ 0 the system is set free of external forces, and

free oscillations are therefore observed. Tests were performed in air and in water at various fluid velocities from 0 to

5.2m/s which is close to reactor operating conditions, and with various initial displacements from 1 to 10mm.

Displacements of the third grids are measured with a laser Doppler velocimetry technique.

7.2. Coefficient identification

Both the 2-D and 3-D numerical models are used in simulations to be described. The model includes several

coefficients that have to be chosen. A first set of coefficients was calculated analytically (mfa, I fa, Sfa, I, r, req, mTeq, Lcx,

D and S). A second set including only structural coefficients (G1, G2, E1, E2, mG, mE) was identified from the in air

experiments. The identification process was based on the minimization of the cost function:

F costðG1;G2;E1;E2; mG ; mEÞ ¼
XNsample

i¼1

jdexpðtiÞ � dsimðti;G1;G2;E1;E2;mG; mEÞj

jdexpðtiÞj
, (69)

where dsim is the simulated displacement and dexp is the experimental one. As structural coefficients are identified from

in-air experiments, T0 is accounted for in the stiffness coefficients, thus we have to choose T0 ¼ 0. We can see in Fig. 15

the displacement of a fuel assembly in air obtained by the experiment and by the simulation after optimization for a

1 cm initial displacement. We can notice that the period of oscillations decreases in time (first period 0.26 s, second
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Fig. 14. Experimental apparatus.
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period 0.245 s and third period 0.24 s), which means that the stiffness decreases with displacement, so nonlinear

structure effects have to be accounted for. The set of coefficients obtained by an optimization on the in-air experimental

data with an initial displacement of 1 cm was kept for simulating the other initial displacements. It was also kept for

performing the in-water simulations.

The last set of coefficients including only the coupling coefficients (mf , CN , CT and C) was first determined by

performing pressure measurements through rod bundles subjected to fluid flow, and then empirically adjusted on

5:2m/s experimental displacements. Those coefficients depend on the geometry of the structure, its roughness, the

material, and the casing (for coupling coefficients), but they do not depend on fluid flow conditions and the type of

excitation. For reasons of confidentiality, the coefficients used in the following simulations are not delivered in this

paper.

7.3. Results

Fig. 16 shows the initial conditions of the fuel assemblies and fluid flow, obtained by resolving the statics problem.

We can see that the right fuel assembly is deformed by the flow induced by the deformation of the left fuel assembly.

This process is well-observed experimentally.

Simulations were performed with two initial conditions. In the first case described above (Fig. 16), the initial

conditions have been chosen equal to the statics problem. In the second case, the fluid flow is assumed to be

homogeneous, and the displacement of the right fuel assembly is set to zero. Results show that the initial conditions do

not greatly affect the fuel assembly displacements, thus the simulations that follow are performed with the second initial

condition.

Fig. 17 presents the simulation for two different fluid velocities: 2.4 and 5.2m/s. The results of the simulations are in

good agreement with the experimental data on the left assembly: the damping increases with the axial fluid velocity, and
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Fig. 16. 2-D numerical simulation of static response (initial configuration).
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Fig. 15. Displacement (mm) versus time (s) of the third grid of the left fuel assembly in air: comparison of numerical simulations/

experimental data (dashed line).
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Fig. 17. Displacement (mm) versus time (s) of the third grid of the left fuel assembly (top) and of the right fuel assembly (bottom) for

2.4m/s water flow (left), and 5.2m/s water flow (right): comparison of simulations/experimental data.
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the coupling between fuel assemblies via the fluid is reproduced. However, the energy transmitted to the right fuel

assembly seems to be overestimated at high fluid velocities. The presence of the bypass in the experimental device

induces an asymmetric fluid flow, and the fluid velocity is higher in the left fuel assembly than in the right one: the fluid

velocity profile depends on the fluid velocity because of the nonlinear effects, and the bypass is not taken into account in

the numerical model (Fig. 9), which explains why the coupling is overestimated.

The numerical simulation of the right fuel assembly is out of phase with the experimental curve, possibly due to the

variations of the gap between the fuel assemblies, which induces changes in the porosity, which is assumed to be

constant in the model (see Section 4.5).

We can see in Fig. 17 that a 10mm initial displacement of the left fuel assembly induces a non-negligible 1mm

displacement of the right fuel assembly. This illustrates the importance of the influence of the fluid dynamics on the

structure dynamics, and justifies the modelling of a coupled fluid–structure system.

We have seen that the model reasonably reproduces the fuel assembly dynamics, but it seems to be useless as we have

to perform experiments to obtain the coefficients used in the model. However, the aim of the model is not to simulate

two fuel assemblies but a row of fuel assemblies and finally a whole core. So, coefficients can be obtained with low cost

experiments on a few fuel assemblies with appropriate casing, and used afterward to simulate more fuel assemblies

under various operating conditions. For instance, various configurations mixing end-of-life and beginning-of-life fuel

assemblies can be analysed under various excitation conditions, such as seismic loading.

The coefficients were identified on high level experimental data (initial displacement of 1 cm, and fluid velocity of

5.2m/s), and simulations of lower fluid velocities and initial displacements showed good agreement with experiments.
8. Instability

Paı̈doussis (1966) established numerically that a rod subjected to axial flow becomes unstable when the fluid velocity

reaches a critical value. As the model presented here is based on Paı̈doussis’s theory, instability is observed at very high

fluid velocities. The model predicts instability at fluid velocities greater than 33.9m/s. In reactor operating conditions

the velocity is about 5m/s which is nearly 10 times lower than the critical value obtained by simulations. Accordingly,

there is no risk that instability occurs in practice.

Fig. 18 shows 2-D simulations of the displacement of the fuel assembly middle node, when the fuel assembly is

subjected to very high velocity flow. The fuel assembly vibrates at a frequency of 8:3Hz, which is around three times

higher than the natural frequency observed with lower velocities flows. Fig. 19 shows the shape deformation of the fuel

assembly for those high fluid velocities; the fluid inlet is located at the bottom of the figure.

The instability is due to the fluid term �rDCN=ð2SÞV2
eqx

queqy
=qx in Eq. (42) which becomes dominant with high

velocities as it increases with the square of the fluid velocity V2
eqx

, whereas the damping is proportional to V eqx
. The

fluid force at the bottom is in the opposite direction to that at the head top of the fuel assembly as queqy
=qx changes of

sign, and it therefore induces coupling between structural modes: the first mode excites the second one and so on, and

this causes the fuel assembly to vibrate in a high frequency mode.

The displacement occurring far from the fluid inlet is greater than that occurring near it (Fig. 19). This difference in

amplitude is due to the term �rDCT=ð2SÞxV2
eqx

q2ueqy
=qx2 in (42) which increases with x and is maximal at the top of

the fuel assembly.
9. Conclusion

In this study, an overall model for a nuclear reactor core has been developed using a porous medium method. One of

the main features of this model is the account of the dynamics of both the fluid and the structure, the nonlinear

behaviour of the fuel assemblies, and the fluid–structure coupling. Fuel assemblies are assimilated to porous media with

nonlinear viscoelastic behaviour. The fluid equations are written in the ALE framework, and space-averaged in order to

determine the overall behaviour of the fluid. The fluid–structure coupling is provided by a body force based on fluid

forces acting on a rod subjected to an axial flow. Numerical 2-D and 3-D models were drawn up using a finite element

method for the spatial discretization. The temporal discretization is performed using two classical schemes, for the

structure, and for the fluid. The results of the numerical simulations are in good agreement with the experimental data.

The effect of the fluid velocity on the damping of the structure is well reproduced, whereas the coupling between fuel

assemblies is qualitatively reproduced.

Because of the averaged character of porous media equations, we have transformed a fluid–structure problem with a

complex geometry (large number of rods linked by numerous contact friction points) into a problem with a more simple
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Fig. 19. Fuel assembly shape deformation at high velocity flow rates, axial position (m) versus displacement (mm).
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Fig. 18. Fuel assembly displacement (mm) versus time (s) in the case of 33m/s water flow (left) (stable regime), a 33.9m/s water flow

(middle) (critical regime), and a 35.5m/s water flow (right) (unstable regime).
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geometry (equivalent beam for each fuel assembly). That permitted to model a fuel assembly with few degrees of

freedom, thus a large number of fuel assemblies can be simulated.

Further studies including sinusoidal and seismic excitations with a larger number of fuel assemblies are in progress.

Experiments on a 3� 3 fuel assembly network subjected to an axial flow will be performed and the results compared

with numerical simulations.
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doctorat de l’Université de la Méditerranée Aix-Marseille.

Pisapia, S., Collard, B., Bellizzi, S., Mori, V., 2003. Modal testing and identification of a PWR fuel assembly. In: Vejvoda, S. (Ed.),

Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMIRT 17), Prague, Czech

Republic, Paper C01-4.

Pomı̂rleanu, R.O., 2005. Spectral response to harmonic excitation of rods in a confined nuclear fuel mini-bundle. In: Proceedings of

PVP 2005: ASME Pressure Vessels and Piping Division conference, Denver Colorado Paper 71486. ASME, New York.

Rigaudeau, J., 1997. Grid modelling and strength criterion in the lateral response of PWR fuel assemblies under accident conditions.

In: 5th International Conference on Nuclear Engineering, Nice, France, ICONE5-2568. Elsevier, Amsterdam.

Robbe, M.F., Bliard, F., 2002. A porosity method to describe the influence of internal structures on a fluid flow in case of fast dynamics

problems. Nuclear Engineering and Design 215, 217–242.

Sarpkaya, T., 2001. On the force decompositions of Lighthill and Morison. Journal of Fluids and Structures 15, 227–233.

Smagorinsky, J., 1963. General circulation experiments with primitive equations. Monthly Weather Review 91, 216–241.

Taylor, G.I., 1952. Analysis of the swimming of long and narrow animals. Proceedings of the Royal Society London A 214, 158–184.

Viallet, E., Bolsee, G., Ladouceur, B., Goubin, T., Rigaudeau, J., 2003. Validation of PWR core seismic models with shaking table

tests on interacting scale 1 fuel assemblies. In: Vejvoda, S. (Ed.), Transactions of the 17th International Conference on Structural

Mechanics in Reactor Technology (SMIRT 17), Prague, Czech Republic, Paper C01-2.

Zhang, R.J., 1998. Structural homogenized analysis for a nuclear reactor core. Nuclear Engineering and Design 183, 151–156.

Zhang, H., Zhang, X., Ji, S., Guo, Y., Ledezma, G., Elabbasi, N., deCougny, H., 2003. Recent development of fluid–structure

interaction capabilities in the ADINA system. Computers and Structures 81, 1071–1085.

Zhou, C.Y., Graham, J.M.R., 2000. A numerical study of cylinders in waves and currents. Journal of Fluids and Structures 14,

403–428.


	Modelling Pressurized Water Reactor cores in terms �of porous media
	Introduction
	Method
	Preliminary: forces acting on a rod
	Païdoussis model
	Modified Païdoussis model

	Porous model equations
	Hypotheses
	Equivalent fluid model
	ALE approach
	Space-averaging
	Turbulence modelling
	Equivalent fluid

	Equivalent structure model
	Space-averaging
	Kinematics of a fuel assembly
	Fluid-structure coupling force
	Dynamic equations
	Constitutive laws of the beam

	Coupled model
	Discussion

	Numerical model
	Numerical example
	2-D simulations
	3-D simulations

	Experimental validation
	Experimental apparatus
	Coefficient identification
	Results

	Instability
	Conclusion
	References


